August 27, 2013

PVSC 2013-Intermediate Band Solar Cells

I recently had an opportunity to attend the 39th IEEE Photovoltaics Specialists Conference in Tampa, Florida ( Since I am just starting to work in Photovoltaics, it was a great opportunity for me to get immersed in this very quickly developing field by listening to high quality presentations given by the leaders of the field. The presentations were divided into 11 topic areas, with a few sessions taking place at the same time. I really wanted to be in a few rooms simultaneously, but with my background in quantum theory I decided to focus mostly on attending sessions from research Area 1: Fundamentals and New Concepts of Future Technologies. I found a talk by Megumi Yoshida from Imperial College London :“Progress towards Realizing Intermediate Band Solar Cell – Sequential Absorption of Photons in a Quantum Well Intermediate Band Solar Cell” particularly interesting. I was familiar with the concept of introducing the intermediate band (IB) into the solar cell to improve the more
August 15, 2013

PVSC 2013-Exploring Tampa in the Sunshine

The 39th Photovoltaic Specialists Conference in Tampa, Florida was a great conference. Photovoltaic specialists from all over the world gathered at the paradise of recreation, learning the most recent developments in this field delivered by hundreds of high quality presentations and posters. The topics span across eleven general areas from fundamental and new concepts of PV to the supporting of PV innovation with little to none overlap between each area. For me, an organic chemist focusing on developing new polymers to improve the stability of organic photovoltaics (OPV), the area that mostly interested me was, without a doubt, OPV. Thursday of last week was the day for OPVs. In the morning, Professor Christian Körner from Heliatek GmbH gave a talk on the recent progress of organic solar cells [1].  Like a typical general review of this field, the talk started with some fundamental concepts and theories of organic semiconductors, then moved to some developments that aimed at solving the issues more
August 7, 2013

Is there a light at the end of the tunnel for PV in Ontario?

As Ontario’s flagship renewable energy (RE) incentive program, referred to as the Feed-in Tariff (FIT), enters its third review, it is an appropriate point to assess several recent political and policy changes which have implications for the next iteration of RE incentives. In my previous blog, I wrote about the challenges facing Photovoltaics (PV) with respect to the World Trade Organization’s (WTO) initial ruling against Ontario’s domestic content requirements, growing economic turbulence in the RE sector, political adjustments within the provincial Liberal party  as well as other industrial and policy factors that have created uncertainty surrounding the future deployment and development of PV in Ontario. These events have had lasting impacts on the prospects of PV and continue to influence future policy engagement. In conjunction with prior developments, there are new pressures and policy changes which will have serious implications for PV. Do these changes point to positive change for the future of PV? Foremost among these pressures is the more
July 29, 2013

PVSC 2013-A long awaited meeting with Cu(In,Ga)Se2 expert Dr. Rockett!

The Photovoltaic Specialist Conference (PVSC) offers a tremendous opportunity to any photovoltaic (PV) oriented researcher both young and old to convene at a single location and share their latest research results, meet new researchers and potentially new collaborators, catch-up with old colleagues or previous acquaintances in the field, and finally, keep up to date on the recent progress in the field of photovoltaics (or for young researchers, experience an in-depth introduction to the field). For me, it was my second time attending PVSC and I took advantage by participating in the presentation of some of my research group’s latest research results on dilute nitride solar cells, detailed balance predictions for quadruple junction solar cells, and spectral conversion affects with respect to thin film PV devices. I also had the opportunity to learn more about some research progress being made in thin film photovoltaics specifically on Cu(In,Ga)Se2, and on that note, I met a new potential collaborator: Dr. Angus Rockett from more
July 22, 2013

The Challenges of Cheap Organic Photovoltaics

My name is Bruno and I’m a postdoctoral fellow in the group of Michel Côté  at the University of Montréal. Our group focuses on developing “beyond ab initio” numerical methods in order to model organic molecules, polymers and interfaces for applications in organic photovoltaics. Organic materials offer great promises for photovoltaic applications, mainly because they would be very cheap to produce. Indeed, we are constantly surrounded by plastics of various kinds, so there already exists a large chemical industry that can handle vats of the stuff. Wouldn’t it be great if you could just buy 100 square meters of rolled up photovoltaic plastic films at a local hardware store, unfurl it on the roof at home and get some of the Sun’s sweet power for (almost) free? Well that’s still science fiction at this point but our group’s goal is to help make it happen. There are very many possible organic compounds and polymers,and exponentially more possible combinations which could do the trick. It’s like looking for a more
July 9, 2013

Faith in Science

How can one even begin to describe the APS March Meeting, the biggest material physics international conference of the year? The sheer magnitude of a whole week with more than 40 simultaneous talks at all time can be vertiginous for its tens of thousands of attendees. Instead of spending this article on a ridiculously long exhaustive list of all the scientific results that were presented, I’ll instead concentrate on the biggest realization I’ve made during the week while preparing my talk. An underlying fact that everyone relates to, but few people ever talk about. The presence of faith in science. Faith is a word that possesses a strong taboo in the scientific community. Indeed, science relies on verifiable, repeatable facts, and, most often than not, steps away from religion altogether. But faith isn’t really about religion. Faith is a great motivational tool, a strong emotion that scientists tend to forget all too quickly. Faith is at the core of everyone, more
June 25, 2013

PV Research: The writing process

For a few years now, I have been following high impact research in the field of photovoltaics. I have read hundreds of scientific papers and performed complex calculations. However, I have to admit that I found most of this work relatively straightforward. As a scientist, I am highly interested in new results in my field, especially topics I don’t fully understand. Hence, learning the complexities in the field of renewable energy was second nature for me. I am currently facing the hardest part of the Ph.D. in my opinion: the process of thesis writing. Initially, I had a lot of difficulty in starting to write since there were so many other things that needed to be done! I concluded that I wasn’t going to write efficiently if I didn’t find a solution. So I stopped my daily routine, sat down and thought about how I could increase my writing throughput. And this is what I want to discuss in this more
June 4, 2013

Nanowire Photovoltaics at the Materials Research Society’s 2013 Spring Meeting

I recently attended the 2013 Materials Research Society’s (MRS) Spring Meeting from April 1st  to 5th in San Francisco, California. The MRS brings together members of industry, academia, and government to discuss the latest in materials research across a wide variety of disciplines. There were 56 parallel technical sessions, an exhibit, and a wide variety of tutorial sessions taught by leading scientists and engineers.  I presented a poster entitled, “Flux engineering for height dependent morphological control of branched nanowires” in a section focused on nanostructured semiconductors and nanotechnology. I attended talks primarily focused on nanowire growth and applications. Numerous talks focused on the use of nanowires in photovoltaic devices that I believe are of interest to the Canadian Photovoltaic Innovation Network.  Here I will briefly discuss a couple of highlights. Results from a paper recently published in Science detailing high performance solar cells consisting of nanowire arrays were presented by a member of The Nanostructure Consortium at Lund University in more
May 22, 2013

Future of Crystalline Silicon Photovoltaics

Last year I had the opportunity to attend two big international Photovoltaics (PV) conferences.  The keynote speeches at both conferences discussed the future of crystalline silicon (c-Si) and ideas for high efficiency low cost c-Si PV technology. With less expensive organic PVs in the market and efficiency mark of thick crystalline silicon cells jammed at ~ 26% , these issues have been the hottest break-time discussion topics among people working in c-Si PV. Recently, a very interesting article on “exotic silicon” by researchers at University of California, Davis on January 25, 2013 in Physical Review letters stirred up excitement in c-Si PV world. This exotic silicon, also called BC8 silicon, is a type of silicon that can be formed under extremely high pressure and is still capable of maintaining its stability at normal pressures. So what’s exotic about this silicon?? It can produce multiple electron hole pairs per incident photon in contrast with one e-h pair/photon generation in normal c-Si! more
May 12, 2013

How Have We Measured Up?

We are constantly inundated with projections, estimates, and forecasts of our future global and photovoltaic (PV) energy requirements. How much energy will we need by 2050? How much of our energy should come from PV? How much PV capacity can we install by 2020? Will that be enough? I thought it would be interesting to see how we’ve done on our last decade of projections for global PV installations. The European Photovoltaic Industry Association (EPIA) is among various organizations that project and report the status of the PV market. From a series of EPIA’s Solar Generation (SG) reports ranging from SG1 (2001) to SG6 (2011) I looked at year-over-year projections for total global installed PV capacity, and plotted them alongside the actual installed values (see Figure 1). Figure 1 Cumulative installed photovoltaic capacity values and estimates from several EPIA reports. It turns out that we’ve consistently beat the projections by large margins. In fact, the 2010 installed value (>39 GW) more
Blog|Solar Energy|